Joint Estimation of Information and Distributed Link-Scheduling in Wireless Networks: Mean-Field Approximation and Graphical Models

نویسنده

  • Sung-eok Jeon
چکیده

In a large multi-hop wireless network, nodes are preferable to make distributed link-scheduling decisions with information exchange only among a small number of neighbors. However, for a slowly-decaying channel and densely-populated interfering nodes, a small size neighborhood often results in nontrivial link outages and is thus insufficient for making optimal scheduling decisions. A question arises how to incorporate the information outside a neighborhood in distributed link-scheduling. In this work, we develop joint approximation of information and distributed link scheduling. We first apply machine learning approaches to model distributed link-scheduling with complete information. We then characterize the information outside a neighborhood, i.e., the residual interference, as an aggregated random loss variable. The loss variable is characterized by either a Mean-Field approximation or a normal distribution based on the Lyapunov central limit theorem. The approximated information outside a neighborhood is incorporated in a factor graph. This results in joint approximation of information and distributed link-scheduling in an iterative fashion. Link-scheduling decisions are first made at each individual node based on the approximated loss variables. Loss variables are then updated and used for next link-scheduling decisions. The algorithm repeats between these two phases until convergence. Interactive iterations among these variables are implemented by a message-passing algorithm over a factor graph. Simulation results show that using learned information outside a neighborhood jointly with distributed linkscheduling reduces the outage probability close to zero even for a small neighborhood.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of the Negative-exponential and the K-distribution modeled FSO turbulent links on the theoretical and simulated performance of the distributed diffusion networks

Merging the adaptive networks with the free space optical (FSO) communication technology is a very interesting field of research because by adding the benefits of this technology, the adaptive networks become more efficient, cheap and secure. This is due to the fact that FSO communication uses unregistered visible light bandwidth instead of the overused radio spectrum. However, in spite of all ...

متن کامل

A JOINT DUTY CYCLE SCHEDULING AND ENERGY AWARE ROUTING APPROACH BASED ON EVOLUTIONARY GAME FOR WIRELESS SENSOR NETWORKS

Network throughput and energy conservation are two conflicting important performance metrics for wireless sensor networks. Since these two objectives are in conflict with each other, it is difficult to achieve them simultaneously. In this paper, a joint duty cycle scheduling and energy aware routing approach is proposed based on evolutionary game theory which is called DREG. Making a trade-off ...

متن کامل

Joint Approximation of Information and Distributed Link-Scheduling Decisions in Wireless Networks

For a large multi-hop wireless network, nodes are preferable to make distributed and localized link-scheduling decisions with only interactions among a small number of neighbors. However, for a slowly decaying channel and densely populated interferers, a small size neighborhood often results in nontrivial link outages and is thus insufficient for making optimal scheduling decisions. A question ...

متن کامل

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012